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SUMMARY This paper proposes a new kind of hidden
Markov model (HMM) based on multi-space probability distri-
bution, and derives a parameter estimation algorithm for the
extended HMM. HMMs are widely used statistical models for
characterizing sequences of speech spectra, and have been suc-
cessfully applied to speech recognition systems. HMMs are cat-
egorized into discrete HMMs and continuous HMMs, which can
model sequences of discrete symbols and continuous vectors, re-
spectively. However, we cannot apply both the conventional dis-
crete and continuous HMMs to observation sequences which con-
sist of continuous values and discrete symbols: F0 pattern mod-
eling of speech is a good illustration. The proposed HMM in-
cludes discrete HMM and continuous HMM as special cases, and
furthermore, can model sequences which consist of observation
vectors with variable dimensionality and discrete symbols.
key words: hidden Markov model, text-to-speech, F0, multi-
space probability distribution

1. Introduction

The hidden Markov models (HMMs) are widely used
statistical models, and have been successfully applied
to modeling sequences of speech spectra in speech
recognition systems. The performance of HMM-
based speech recognition systems has been improved
by techniques which utilize the flexibility of HMMs:
context-dependent modeling [1], dynamic feature pa-
rameters [2], mixtures of Gaussian densities [3], tying
techniques (e.g., [4]), and speaker/environment adap-
tation techniques (e.g., [5]).

HMMs are categorized into discrete and continuous
HMMs, which can model sequences of discrete symbols
and continuous vectors, respectively. However, we can-
not apply both the conventional discrete and continu-
ous HMMs to observations which consist of continuous
values and discrete symbols. Modeling the fundumental
frequency (F0) pattern of speech is a good illustration:
we cannot directly apply both the conventional discrete
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and continuous HMMs to F0 pattern modeling since
F0 values are not defined in the unvoiced region, i.e.,
the observation sequence of an F0 pattern is composed
of one-dimensional continuous values and discrete sym-
bols which represent “unvoiced.” Several methods have
been investigated for handling the unvoiced region: i)
replacing each “unvoiced” symbol by a random vec-
tor generated from a probability density function (pdf)
with a large variance and then modeling the random
vectors explicitly in the continuous HMMs [6], ii) mod-
eling the “unvoiced” symbols explicitly in the continu-
ous HMMs by replacing each “unvoiced” symbol with 0
and adding an extra pdf for the “unvoiced” symbol to
each mixture [7], iii) assuming that F0 values always ex-
ist but they cannot be observed in the unvoiced region
and applying the EM algorithm [8]. Although approach
iii) is appropriate from the viewpoint of statistical mod-
eling, it intends to estimate F0 values which are not ex-
istent contradictorily. Approaches i) and ii) are based
on heuristic assumptions. As a result, we cannot derive
statistical techniques, e.g., context-dependent model-
ing, speaker/environment adaptation techniques, in a
statistically correct manner.

This paper describes a new kind of HMM in which
the state output probabilities are defined by multi-
space probability distributions, and derives its reesti-
mation formulas. Each space in the multi-space proba-
bility distribution has its weight and a continuous pdf
whose dimensionality depends on the space. An obser-
vation consists of an n-dimensional continuous vector
and a set of space indices which specify n-dimensional
spaces. As a result, the extended HMM includes both
the discrete and continuous mixture HMMs as special
cases, and furthermore, can model the sequences of ob-
servation vectors with variable dimensionality including
zero-dimensional observations, i.e., discrete symbols.

This paper is organized as follows. Multi-space
probability distribution and multi-space probability
distribution HMM (MSD-HMM) are defined in Sects. 2
and 3, respectively. A reestimation algorithm for MSD-
HMMs is derived in Sect. 4. The relation between the
conventional and the proposed HMMs, and the appli-
cation of MSD-HMM to F0 pattern modeling, are dis-
cussed in Sect. 5. Concluding remarks and our plans
for future work are presented in the final section.
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2. Multi-Space Probability Distribution

We consider a sample space Ω shown in Fig. 1, which
consists of G spaces:

Ω =
G⋃

g=1

Ωg, (1)

where Ωg is an ng-dimensional real space Rng , speci-
fied by space index g. While each space has its own
dimensionality, some of them may have the same di-
mensionality.

Each space Ωg has its probability wg, i.e., P (Ωg) =
wg, where

∑G
g=1 wg = 1. If ng > 0, each space has a

pdf function Ng(x), x ∈ Rng , where
∫ Ng(x)dx = 1.

We assume that Ωg contains only one sample point if
ng = 0. Accordingly, we have P (Ω) = 1.

Each event E, which will be considered in this pa-
per, is represented by a random vector o which consists
of a set of space indices X and a continuous random
variable x ∈ Rn, that is,

o = (X,x), (2)

where all spaces specified by X are n-dimensional. On
the other hand, X does not necessarily include all in-
dices which specify n-dimensional spaces (see o1 and
o2 in Fig. 1). It is noted that not only the observation
vector x but also the space index set X is a random
variable, which is determined by an observation device
(or feature extractor) at each observation. The obser-
vation probability of o is defined by

b(o) =
∑

g∈S(o)

wgNg(V (o)), (3)

where

S(o) = X, V (o) = x. (4)

It is noted that, although Ng(x) does not exist for ng =
0 since Ωg contains only one sample point, for simplicity
of notation, we define Ng(x) ≡ 1 for ng = 0.

Some examples of observations are shown in Fig. 1.
An observation o1 consists of a set of space indices
X1 = {1, 2, G} and a three-dimensional vector x1 ∈
R3. Thus the random variable x is drawn from one of
three spaces Ω1, Ω2, ΩG ∈ R3, and its pdf is given by
w1N1(x) + w2N2(x) + wGNG(x).

The probability distribution defined above, which
will be referred to as multi-space probability distribu-
tion (MSD) in this paper, is the same as the discrete
distribution when ng ≡ 0. Furthermore, if ng ≡ m > 0
and S(o) ≡ {1, 2, . . . , G}, the multi-space probability
distribution is represented by a G-mixture pdf. Thus
the multi-space probability distribution is more general
than either discrete or continuous distributions.

The following example shows that the multi-space

Fig. 1 Multi-space probability distribution and observations.

probability distribution conforms to statistical phenom-
ena in the real world:

A man is fishing in a pond. There are red fishes,
blue fishes, and tortoises in the pond. In addi-
tion, some junk articles are in the pond. When
he catches a fish, he is interested in the kind of
the fish and its size, for example, the length and
height. When he catches a tortoise, it is sufficient
to measure the diameter if we assume that the tor-
toise has a circular shape. Furthermore, when he
catches a junk article, he takes no interest in its
size.

In this case, the sample space consists of four spaces:

Ω1: two-dimensional space correponding to lengths and
heights of red fishes.

Ω2: two-dimensional space correponding to lengths and
heights of blue fishes.

Ω3: one-dimensional space correponding to diameters
of tortoises.

Ω4: zero-dimensional space correponding to junk arti-
cles.

The weights w1, w2, w3, w4 are determined by the ra-
tio of red fishes, blue fishes, tortoises, and junk arti-
cles in the pond. Functions N1(·) and N2(·) are two-
dimensional pdfs for sizes (lengths and heights) of red
fishes and blue fishes, respectively. The function N3(·)
is the one-dimensional pdf for diameters of tortoises.
For example, when the man catches a red fish, the
observation is given by o = ({1},x), where x is a
two-dimensional vector which represents the length and
height of the red fish. Suppose that he is fishing day
and night, and during the night, he cannot distinguish
between the colors of fishes, while he can measure their
lengths and heights. In this case, the observation of a
fish at night is given by o = ({1, 2},x).
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Fig. 2 An HMM based on multi-space probability distribution.

3. HMMs Based on Multi-Space Probability
Distribution

By using the multi-space distribution, we define a new
kind of HMM. In this paper, we call it multi-space
probability distribution HMM (MSD-HMM). The out-
put probability in each state of MSD-HMM is given
by the multi-space probability distribution defined in
the previous section. An N -state MSD-HMM λ is
specified by the initial state probability distribution
π = {πj}N

j=1, the state transition probability distribu-
tion A = {aij}N

i, j=1, and the state output probability
distribution B = {bi(·)}N

i=1, where

bi(o) =
∑

g∈S(o)

wig Nig(V (o)). (5)

As shown in Fig. 2, each state i has G pdfs Ni1(·),
Ni2(·), . . . , NiG(·), and their weights wi1, wi2, . . . , wiG,
where

∑G
g=1 wig = 1. The observation probability of

O = {o1,o2, . . . ,oT } can be written as

P (O|λ)

=
∑
all q

T∏
t=1

aqt−1qtbqt(ot)

=
∑
all q

T∏
t=1

aqt−1qt

∑
g∈S(ot)

wqtgNqtg(V (ot))

=
∑
all q


 ∑

g∈S(o1)

aq0q1wq1gNq1g(V (o1))





 ∑

g∈S(o2)

aq1q2wq1gNq2g(V (o2))




· · ·

 ∑

g∈S(oT )

aqT−1qT wqT gNqT g(V (oT ))




=
∑

all q,l

T∏
t=1

aqt−1qtwqtltNqtlt(V (ot)), (6)

where q = {q1, q2, . . . , qT } is a possible state sequence,
l = {l1, l2, . . . , lT } ∈ {S(o1) × S(o2) × . . . × S(oT )}
is a sequence of space indices which is possible for the
observation sequence O, and aq0j denotes πj .

Equation (6) can be calculated efficiently through
the forward and backward variables:

αt(i) = P (o1,o2, . . . ,ot, qt = i|λ) (7)
βt(i) = P (ot+1,ot+2, . . . ,oT |qt = i, λ), (8)

which can be calculated with the forward-backward in-
ductive procedure in a manner similar to conventional
HMMs:

1. Initialization:

α1(i) = πibi(o1), 1 ≤ i ≤ N
βT (i) = 1, 1 ≤ i ≤ N

(9)

2. Recursion:

αt+1(i) =


 N∑

j=1

αt(j)aji


 bi(ot+1),

1 ≤ i ≤ N, t = 1, 2, . . . , T − 1 (10)

βt(i) =
N∑

j=1

aijbj(ot+1)βt+1(j),

1 ≤ i ≤ N, t = T − 1, 2, . . . , 1. (11)

According to the definitions, (6) can be calculated as

P (O|λ) =
N∑

i=1

αT (i) =
N∑

i=1

aq0ibi(o1)β1(i). (12)

The forward and backward variables are also used for
calculating the reestimation formulas derived in the
next section (i.e., calculation of Eqs. (15) and (16)).

4. Reestimation Algorithm

For a given observation sequence O and a particular
choice of MSD-HMM, the objective in maximum like-
lihood estimation is to maximize the observation like-
lihood P (O|λ) given by Eq. (6), over all parameters in
λ. In a manner similar to those reported in [9] and
[3], we derive reestimation formulas for the maximum
likelihood estimation of MSD-HMM.
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4.1 Q-Function

An auxiliary function Q(λ′, λ) of current parameters λ′

and new parameters λ is defined as follows:

Q(λ′, λ) =
∑

all q,l

P (O, q, l|λ′) logP (O, q, l|λ). (13)

In the following, we assume Nig(·) to be the Gaussian
density with mean vector µig and covariance matrix
Σig. However, extension to elliptically symmetric den-
sities which satisfy the consistency conditions of Kol-
mogorov is straightforward. We present the following
three theorems:

Theorem 1:

Q(λ′, λ) ≥ Q(λ′, λ′) → P (O, λ) ≥ P (O, λ′) (14)

Theorem 2: If, for each space Ωg, there are among
V (o1), V (o2), . . . , V (oT ), ng + 1 observations g ∈
S(ot), any ng of which are linearly independent,
Q(λ′, λ) has a unique global maximum as a function
of λ, and this maximum is the one and only critical
point.

Theorem 3: A parameter set λ is a critical point of
the likelihood P (O|λ) if and only if it is a critical point
of the Q-function.

Theorems 1 and 3 can be proved in a similar manner to
the conventional HMM. We have to newly prove Theo-
rem 2, which confirms that the Q-function has a unique
global maximum as a function of λ because the pro-
posed HMM has a different state output probability
distribution from the conventional descrete or contin-
uous HMMs. The proof of Theorem 2 is given in Ap-
pendix.

We define the parameter reestimates to be those
which maximize Q(λ′, λ) as a function of λ, λ′ being the
latest estimates. Because of the above theorems, the
sequence of reestimates obtained in this way produces a
monotonic increase in the likelihood unless λ is a critical
point of the likelihood.

4.2 Maximization of Q-Function

For given observation sequence O and model λ′, we
derive parameters of λ which maximize Q(λ′, λ).

The posterior probability of being in state i at time
t, given the observation sequence O and model λ, is
given by

γt(i, h)
= P (qt = i, lt = h|O, λ)
= P (qt = i|O, λ)P (lt = h|qt = i,O, λ)

=
P (qt = i,O|λ)

P (O|λ) P (lt = h|qt = i,O, λ)

=
αt(i)βt(i)

N∑
j=1

αt(j)βt(j)

· wihNih(V (ot))∑
g∈S(ot)

wigNig(V (ot))
.

(15)

Similarly, the posterior probability of transitions from
state i to state j at time t+ 1 is given by

ξt(i, j) = P (qt = i, qt+1 = j|O, λ)

=
P (qt = i, qt+1 = j,O|λ)

P (O|λ)
=

αt(i)aijbj(ot+1)βt+1(j)
N∑

m=1

N∑
k=1

αt(m)amkbk(ot+1)βt+1(k)

.

(16)

We define a function T (O, g) which returns a set of
time t at which the space index set S(ot) includes space
index g:

T (O, g) = {t|g ∈ S(ot)}. (17)

By introducing this fucntion, the following manipula-
tions of the equations can be carried out in a similar
manner to the conventional continuous mixture HMMs.

From Eq. (6), logP (O, q, l|λ) can be written as

logP (O, q, l|λ)

=
T∑

t=1

(
log aqt−1qt + logwqtlt + logNqtlt(V (ot))

)
. (18)

Hence, Q-function Eq. (13) can be written as

Q(λ′, λ)

=
∑

all q,l

P (O, q, l|λ′) log aq0q1

+
∑

all q,l

P (O, q, l|λ′)
T−1∑
t=1

log aqtqt+1

+
∑

all q,l

P (O, q, l|λ′)
T∑

t=1

logwqtlt

+
∑

all q,l

P (O, q, l|λ′)
T∑

t=1

logNqtlt(V (ot)).

(19)

The first term of Eq. (19), which is related to aq0q1 , i.e.,
πq1 , is given by
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∑
all q,l

P (O, q, l|λ′) log aq0q1

=
N∑

i=1

∑
all l

P (O, q1 = i, l|λ′) log aq0i

=
N∑

i=1

P (O, q1 = i|λ′) log πi. (20)

The second term of Eq. (19), which is related to aij , is
given by

∑
all q,l

P (O, q, l|λ′)
T−1∑
t=1

log aqtqt+1

=
N∑

i=1

N∑
j=1

T−1∑
t=1

∑
all l

P (O, qt = i, qt+1 = j, l|λ′) log aij

=
N∑

i,j=1

T−1∑
t=1

P (O, qt = i, qt+1 = j|λ′) log aij .

(21)

The third term of Eq. (19), which is related to wig , is
given by

∑
all q,l

P (O, q, l|λ′)
T∑

t=1

logwqtlt

=
N∑

i=1

T∑
t=1

∑
g∈S(ot)

P (O, qt = i, lt = g|λ′) logwig

=
N∑

i=1

G∑
g=1

∑
t∈T (O,g)

P (O, qt = i, lt = g|λ′) logwig .

(22)

The fourth term of Eq. (19), which is related to Nig(·),
is given by

∑
all q,l

P (O, q, l|λ′)
T∑

t=1

logNqtlt(V (ot))

=
N∑

i=1

T∑
t=1

∑
g∈S(ot)

P (O, qt = i, lt = g|λ′)

· logNig(V (ot))

=
N∑

i=1

G∑
g=1

∑
t∈T (O,g)

P (O, qt = i, lt = g|λ′)

· logNig(V (ot)). (23)

Equations (20)–(22) have the form of
∑N

i=1 ui log yi,
which attains its unique maximum point

yi =
ui

N∑
j=1

uj

(24)

under the constraint
∑N

i=1 yi = 1, yi ≥ 0. There-
fore, the parameters πi, aij , and wig which maxi-
mize Eq. (20), subject to the stochastic constraints∑N

i=1 πi = 1,
∑N

j=1 aij = 1, and
∑G

g=1 wg = 1, re-
spectively, can be derived as

πi =
P (O, q1 = i|λ′)

N∑
j=1

P (O, q1 = j|λ′)

=
P (O, q1 = i|λ′)

P (O|λ′)

= P (q1 = i|O, λ′)

=
∑

g∈S(o1)

γ′
1(i, g) (25)

aij =

T−1∑
t=1

P (O, qt = i, qt+1 = j|λ′)

N∑
k=1

T−1∑
t=1

P (O, qt = i, qt+1 = k|λ′)

=

T−1∑
t=1

P (O, qt = i, qt+1 = j|λ′)

T−1∑
t=1

P (O, qt = i|λ′)

=

T−1∑
t=1

P (qt = i, qt+1 = j|O, λ′)

T−1∑
t=1

P (qt = i|O, λ′)

=

T−1∑
t=1

ξ′t(i, j)

T−1∑
t=1

∑
g∈S(ot)

γ′
t(i, g)

(26)

wig =

∑
t∈T (O,g)

P (O, qt = i, lt = g|λ′)

G∑
h=1

∑
t∈T (O,h)

P (O, qt = i, lt = h|λ′)

=

∑
t∈T (O,g)

γ′
t(i, g)

G∑
h=1

∑
t∈T (O,h)

γ′
t(i, h)

. (27)

When Nig(·), ng > 0 is the ng-dimensional Gaussian
density function with mean vector µig and covariance
matrixΣig, Eq. (23) is maximized by setting the partial
derivatives with respect to µig and Σig

−1:
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∂

∂µig

∑
t∈T (O,g)

P (O, qt = i, lt = g|λ′)

· logNig(V (ot)) = 0 (28)
∂

∂Σ−1
ig

∑
t∈T (O,g)

P (O, qt = i, lt = g|λ′)

· logNig(V (ot)) = 0. (29)

From

∂

∂µig

∑
t∈T (O,g)

P (O, qt = i, lt = g|λ′) logNig(V (ot))

=
∑

t∈T (O,g)

P (O, qt = i, lt = g|λ′)

· ∂

∂µig

logNig(V (ot))

=
∑

t∈T (O,g)

P (O, qt = i, lt = g|λ′)

·Σ−1
ig (V (ot)− µig)

= 0 (30)

and

∂

∂Σ−1
ig

∑
t∈T (O,g)

P (O, qt = i, lt = g|λ′) logNig(V (ot))

=
∑

t∈T (O,g)

P (O, qt = i, lt = g|λ′)

· ∂

∂Σ−1
ig

logNig(V (ot))

=
1
2

∑
t∈T (O,g)

P (O, qt = i, lt = g|λ′)

· (Σig − (V (ot)− µig)(V (ot)− µig)
T
)

= 0, (31)

µig and Σig are given by

µig =

∑
t∈T (O,g)

P (O, qt = i, lt = g|λ′)V (ot)

∑
t∈T (O,g)

P (O, qt = i, lt = g|λ′)

=

∑
t∈T (O,g)

γ′
t(i, g)V (ot)

∑
t∈T (O,g)

γ′
t(i, g)

, ng > 0 (32)

and

Σig =

( ∑
t∈T (O,g)

P (O, qt = i, lt = g|λ′)

(V (ot)− µig)(V (ot)− µig)
T

)
∑

t∈T (O,g)

P (O, qt = i, lt = g|λ′)

=

( ∑
t∈T (O,g)

γ′
t(i, g)

(V (ot)− µig)(V (ot)− µig)
T

)
∑

t∈T (O,g)

γ′
t(i, g)

,

ng > 0, (33)

respectively. From the condition mentioned in Theorem
2, it can be shown that each Σig is positive definite.

From Sect. 4.1, by iterating the following proce-
dure: 1) calculating λ which maximizes Q(λ′, λ) by
Eqs. (25)–(27), (32), and (33), and 2) substituting the
obtained λ for λ′, we can obtain a critical point of
P (O|λ).

5. Discussion

5.1 Relation to Discrete Distribution HMM and Con-
tinuous Distribution HMM

The MSD-HMM includes the discrete HMM and the
continuous mixture HMM as special cases since the
multi-space probability distribution includes the dis-
crete distribution and the continuous distribution. If
ng ≡ 0, the MSD-HMM is the same as the discrete
HMM. In the case where S(ot) specifies one space, i.e.,
|S(ot)| ≡ 1, the MSD-HMM is exactly the same as
the conventional discrete HMM. If |S(ot)| ≥ 1, the
MSD-HMM is the same as the discrete HMM based
on the multi-labeling VQ [10]. If ng ≡ m > 0 and
S(o) ≡ {1, 2, . . . , G}, the MSD-HMM is the same as
the continuousG-mixture HMM. These can also be con-
firmed by the fact that if ng ≡ 0 and |S(ot)| ≡ 1,
the reestimation formulas Eqs. (25)–(27) are the same
as those for discrete HMM of codebook size G, and
if ng ≡ m and S(ot) ≡ {1, 2, . . . , G}, the reesti-
mation formulas Eqs. (25)–(33) are the same as those
for continuous HMM with m-dimensional G-mixture
densities. Accordingly, MSD-HMM includes the dis-
crete and continuous mixture HMMs as special cases,
and furthermore, can model the sequence of obser-
vation vectors with variable dimensionality including
zero-dimensional observations, i.e., discrete symbols.

In addition, multi-channel HMMs [11] are also re-
lated to MSD-HMMs. Multi-channel HMMs have a
special structure similar to MSD-HMMs. However,



TOKUDA et al.: MULTI-SPACE PROBABILITY DISTRIBUTION HMM
461

they assume that each channel always observes a dis-
crete symbol, and they cannot be applied to the obser-
vation sequence composed of continuous vectors with
variable dimensionality including zero-dimensional ob-
servations, i.e., discrete symbols. On the other hand,
MSD-HMM includes the multi-channel HMM which
was finally derived in [11] as a special case under the
following conditions:

• The sample space consists of zero-dimensional
spaces, each of which has a one-to-one correspon-
dence with each symbol used in the multi-channel
HMM.

• The observation consists of M space indices, each
of which has a one-to-one correspondence with a
channel and is drawn from symbols used in the
channel.

5.2 Application to F0 Pattern Modeling

While the observation of F0 has a continuous value in
the voiced region, there exist no values for the unvoiced
region. We can model this kind of observation sequence
assuming that the observed F0 value occurs from one-
dimensional spaces and the “unvoiced” symbol occurs
from the zero-dimensional space defined in Sect. 2, that
is, by setting ng = 1 (g = 1, 2, . . . , G − 1), nG = 0
and

S(ot) =
{ {1, 2, . . . , G− 1}, (voiced)

{G}, (unvoiced) (34)

the MSD-HMM can cope with F0 patterns including
the unvoiced region without heuristic assumptions. In
this case, the observed F0 value is assumed to be drawn
from a continuous (G− 1)-mixture pdf.

Experiments reported in [12] have shown that the
likelihood of the MSD-HMM for the training data in-
creases monotonically by calculating the reestimation
formulas iteratively. From the trained MSD-HMMs,
we can generate F0 patterns which approximate those
of natural speech by using an algorithm (described in
[13] as the “case 1” algorithm) for speech parameter
generation from HMMs with dynamic features . An
example is shown in Fig. 3, without an explanation of
the experimental conditions because of limitations of
space†.

Real world phenomena of time sequences are not
necessarily observed as a sequence of discrete sym-
bols or continuous vectors. Accordingly, the proposed
HMMs can be applied to not only F0 pattern model-
ing but also the modeling of various kinds of time se-
quences which consist of continuous vectors with vari-
able dimensionality including zero-dimensional vectors,
i.e., discrete symbols. As a result, MSD-HMM expected
to be useful in such research areas as the prediction of
human actions and economic forecasting.

Algorithms based on a statistical framework, which

(a) natural F0

(b) generated F0

Fig. 3 Generated F0 pattern for the sentence “heikiNbairi-
tsuwo sageta keisekiga aru.”

have been developed for the conventional HMMs, can
be applied or extended to MSD-HMMs since the pro-
posed scheme does not utilize any heuristic assumption
or approximation. Actually, in the example shown in
Fig. 3, we derived a model clustering scheme based on
the minimum description length (MDL) principle, and
used it in the model training.

6. Conclusion

A multi-space probability distribution HMM has been
proposed and its reestimation formulas are derived.
The MSD-HMM includes the discrete HMM and the
continuous mixture HMM as special cases, and fur-
thermore, can cope with the sequence of observation
vectors with variable dimensionality including zero-
dimensional observations, i.e., discrete symbols. As
a result, MSD-HMMs can model F0 patterns without
heuristic assumptions.

In the near future, we will present a speech synthe-
sis system in which sequences of speech spectra [15], F0
patterns [12] and state durations [16] are modeled by
MSD-HMM in a unified framework [14]. Fundamental
frequency (F0) pattern modeling based on MSD-HMM
may also be useful for enhancing the performance of
speech recognition systems.
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Appendix: Proof of Theorem 2

The proof consists of the following three parts:

a) The second derivative of the Q-function along any
direction in the parameter space is strictly negative
at a critical point. This implies that any critical

point is a relative maximum and that if there are
more than one they are isolated.

b) Q(λ′, λ) → −∞ as λ approaches the finite bound-
ary of the parameter space or the point at ∞. This
property implies that the global maximum is a crit-
ical point.

c) The critical point is unique.

Proof (a)

From Sect. 4.2, the Q-function can be written as

Q(λ′, λ)

=
N∑

i=1

P (O, q1 = i|λ′) log πi

+
N∑

i,j=1

T−1∑
t=1

P (O, qt = i, qt+1 = j|λ′) log aij

+
N∑

i=1

G∑
g=1

∑
t∈T (O,g)

P (O, qt = i, lt = g|λ′)

·
(
logwig − ng

2
log(2π) +

1
2
log |Cig|

−1
2
(V (ot)− µig)

T Cig(V (ot)− µig)
)
,

(A· 1)
where Cig = Σ−1

ig . From the condition on observations
ot, described in Theorem 2, Σig and Σ−1

ig are positive
definite if Σig is calculated by Eq. (33).

Let us express λ as a linear combination of two
arbitrary points: λ = θλ(1) +(1−θ)λ(2), where 0 ≤ θ ≤
1. That is,

πi = θπ
(1)
i + (1− θ)π(2)

i (A· 2)
aij = θa

(1)
ij + (1− θ)a(2)

ij (A· 3)
wig = θw

(1)
ig + (1− θ)w(2)

ig (A· 4)
Cig = θC

(1)
ig + (1− θ)C(2)

ig (A· 5)
µig = θµ

(1)
ig + (1− θ)µ(2)

ig . (A· 6)
Substituting these equations for Eq. (A· 1) and taking
the second derivative with respect to θ, we obtain

∂2Q
∂θ2

=
N∑

i=1

P (O, q1 = i|λ′)
−(π(1)

i − π
(2)
i )2

(θπ(1)
i + (1− θ)π(2)

i )2

+
N∑

i,j=1

P (O, qt = i, qt+1 = j|λ′)



TOKUDA et al.: MULTI-SPACE PROBABILITY DISTRIBUTION HMM
463

· −(a(1)
ij − a

(2)
ij )2

(θa(1)
ij + (1− θ)a(2)

ij )2

+
N∑

i=1

G∑
g=1

∑
t∈T (O,g)

P (O, qt = i, lt = g|λ′)

·
(

−(w(1)
ig − w

(2)
ig )2

(θw(1)
ig + (1− θ)w(2)

ig )2

+
1
2

ng∑
k=1

−(x(1)
igk − x

(2)
igk)

2

(θx(1)
igk + (1− θ)x(2)

igk)2

−(µ(1)
ig − µ

(2)
ig )T

·
(
θC

(1)
ig + (1− θ)C(2)

ig

)
(µ(1)

ig − µ
(2)
ig )

+2(µ(1)
ig − µ

(2)
ig )T (C(1)

ig − C
(2)
ig )

·[V (ot)− (θµ(1)
ig + (1− θ)µ(2)

ig )]

)
, (A· 7)

where x
(1)
igk and x

(2)
igk satisfy xigk = θx

(1)
igk + (1 − θ)x(2)

igk

for xigk which are the diagonal entries of U igCigU
−1
ig ,

and the orthogonal matrix U ig diagonalizes Cig.
At a critical point, from the relation

∂Q
∂µig

∣∣∣∣∣
µig = θµ

(1)
ig + (1− θ)µ(2)

ig

= (θC(1)
ig + (1− θ)C(2)

ig )

·
( ∑

t∈T (O,g)

P (O, qt = i, lt = g|λ′)

·
(
V (ot)− (θµ(1)

ig + (1− θ)µ(2)
ig )
))

= 0, (A· 8)

the sum involving the term bracketed by [ ] in Eq. (A· 7)
vanishes. All of the remaining terms have negative val-
ues. Therefore, independent of λ(1) and λ(2),

∂2Q
∂θ2

≤ 0 (A· 9)

along any direction.

Proof (b)

The Q-function Q(λ′, λ) can be rewritten as

Q(λ′, λ)

=
N∑

i=1

P (O, q1 = i|λ′) log πi

+
N∑

i,j=1

T−1∑
t=1

P (O, qt = i, qt+1 = j|λ′) log aij

+
N∑

i=1

G∑
g=1

∑
t∈T (O,g)

P (O, qt = i, lt = g|λ′)

·
(
logwig − ng

2
log(2π)

+
1
2

ng∑
s=1

log yigs − 1
2

ng∑
s=1

yigsz
2
tigs

)
, (A· 10)

where yigs, s = 1, 2, . . . , ng are are eigenvalues of Cig,
eigs, s = 1, 2, . . . , ng are an orthonormal set of eigen-
vectors of Cig, and ztigs = (V (ot)− µig)T eigs.

When λ approaches ∞ or the boundary of the pa-
rameter space, one of the following conditions holds.

1) πi → 0
2) aij → 0
3) z2

tigs → ∞
4) wig → 0
5) yigs → 0
6) yigs → ∞

When one of the conditions 1)–5) holds, it is obvi-
ous that Q(λ′, λ) → −∞ because one of the terms
in Eq. (A· 10) approaches −∞. In the case where
yigs → ∞, from the condition on observations ot, de-
scribed in Theorem 2, z2

tigs has a nonzero positive value
at some t. Thus,

log yigs − z2
tigsyigs → −∞. (A· 11)

As a result, Q(λ′, λ) → −∞, as λ approaches the finite
boundary of the parameter space or the point at ∞.

Proof (c)

From Proof (a), if there are multiple critical points,
they are isolated. Assume that Cig = τT

igτ ig, where
τ ig’s are triangular and positive definite. We can
rewrite Eq. (A· 1) as

Q(λ′, λ)

=
N∑

i=1

P (O, q1 = i|λ′) log πi

+
N∑

i,j=1

T−1∑
t=1

P (O, qt = i, qt+1 = j|λ′) log aij

+
N∑

i=1

G∑
g=1

∑
t∈T (O,g)

P (O, qt = i, lt = g|λ′)

·
(
logwig − ng

2
log(2π) + log |τ ig|

−1
2
||τ ig(V (ot)− µig)||2

)
. (A· 12)
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The change of variables {πi, aij , wig, µig, Cig} → {πi,
aij , wig , µig, τ ig}, which is a diffeomorphism, maps
critical points onto critical points. Therefore, the global
maximum is the unique ciritical point since Eq. (A· 12)
is convex with respect to πi, aij , wig,µig, τ ig.
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