List of modifications made in HTS (for ver. 2.1)

Heiga Zen

May 23, 2008

1 Model definition

In HTS, the HTK HMM definition (please see HTKBook Chapter 7) has been modified to support MSD, streamlevel tying, and adaptation of multi-stream HMMs. This section gives its brief description.

First, <MSDInfo> is added to global options of the HTK HMM definition language The arguments to the <MSDInfo> option are the number of streams (default 1) and then for each stream, 0 (non-MSD stream) or 1 (MSD stream) of that stream. The full set of global options in HTS is given below.

```
globalOpts = option { option }
option = <HmmSetId> string |
<StreamInfo> short { short } |
<MSDInfo> short { short } |
<VecSize> short |
<ProjSize> short |
<InputXform> inputXform |
<ParentXform> ~a macro |
covkind |
durkind |
parmkind
```

Second, the number of mixture specification is modified to support stream-level tying structure as follows:

```
HTK
                               HTS
 <State> 2
                                <State> 2
  <NumMixes> 1 2
  <SWeights> 2 0.9 1.1
                                 <SWeights> 2 0.9 1.1
  <Stream> 1
                                 <Stream> 1
                                    <NumMixes> 1
     <Mixture> 1 1.0
                                    <Mixture> 1 1.0
      <Mean> 4
                                     <Mean> 4
        0.3 0.2 0.1 0.0
                                       0.3 0.2 0.1 0.0
      <Variance> 4
                                     <Variance> 4
        0.5 0.4 0.3 0.2
                                       0.5 0.4 0.3 0.2
    <Stream> 2
                                   <Stream> 2
                                    <NumMixes> 2
     <Mixture> 1 0.4
                                    <Mixture> 1 0.4
      <Mean> 2
                                     <Mean> 2
        1.0 2.0
                                       1.0 2.0
      <Variance> 2
                                     <Variance> 2
        4.0 8.0
                                       4.0 8.0
     <Mixture> 2 0.6
                                    <Mixture> 2 0.6
                                     <Mean> 2
      <Mean> 2
        2.0 9.0
                                       2.0 9.0
      <Variance> 2
                                    <Variance> 2
        3.0 6.0
                                       3.0 6.0
```

As you can see, <**NumMixes**> is moved from state-level to stream-level. This modification enables us to include the number of mixture component in the stream-level macro. Based on this implementation, stream-level macro was added. The various distinct points in the hierarchy of HMM parameters which can be tied in HTS is as follows:

- \sim **s** shared state distribution
- $\sim p$ shared stream
- $\sim m$ shared Gaussian mixture component
- \sim u shared mean vector
- $\sim v$ shared diagonal variance vector
- $\sim i$ shared inverse full covariance matrix
- $\sim c$ shared Cholesky U matrix
- $\sim x$ shared arbitrary transform matrix
- $\sim t$ shared transition matrix
- $\sim \! d$ shared duration parameters
- $\sim W$ shared stream weight vector

Note that the $\sim p$ macro is used by the HMM editor HHEd for building tied mixture systems in the original HTK macro definition.

The resultant state definition of in the modified HTK HMM definition language is as follows:

state		<state> short stateinfo</state>
stateinfo	=	~s macro
		[weights] stream { stream } [duration]
macro		string
weights		\sim w macro $<$ SWeights $>$ short vector
vector		float { float }
stream	=	[<stream> short] streaminfo</stream>
streaminfo	=	\sim p macro [mixes] (mixture { mixture } tmixpdf discpdf)
mixes	=	<nummixes> short {short}</nummixes>
tmixpdf	=	<tmix> macro weightList</tmix>
weightList	=	repShort { repShort }
repShort	=	short [* char]
discpdf	=	<dprob> weightList</dprob>
mixture	=	[<mixture> short float] mixpdf</mixture>
mixpdf	=	\sim m macro mean cov [<gconst> float]</gconst>
mean	=	\sim u macro <mean> short vector</mean>
COV	=	var inv xform
var	=	~v macro <variance> short vector</variance>
inv	=	~i macro
		(<invcovar> <lltcovar>) short tmatrix</lltcovar></invcovar>
xform	=	\sim x macro <xform> short short matrix</xform>
matrix	=	float {float}
tmatrix	=	matrix

Third, to support multi-stream HMM adaptation, the HTK HMM definition language for baseclasses is modified. A baseclass is defined as

```
baseClass = ~b macro baseopts classes
baseopts = <MMFIdMask> string <Parameters> baseKind [<StreamInfo>] <NumClasses> int
StreamInfo = short { short } |
baseKind = MIXBASE | MEANBASE | COVBASE
classes = <Class> int itemlist { classes }
```

where *<*StreamInfo*>* is optionally added to specify the stream structure.

2 Added configuration variables

A number of configuration variables have been added to HTK to control new functions implemented in HTS. Their names, default values, and brief descriptions are as follows:

Module	Name	Default	Description
HADAPT	SAVEFULLC	F	Save transformed model set in
			full covariance form
	USESMAP	F	Use structural MAP criterion
	SMAPSIGMA	1.0	Prior parameter for SMAP crite-
			rion
	BANDWIDTH		Bandwidth of transformation
			matrices
	DURUSEBIAS	F	Specify a bias with linear trans- forms
	DURSPLITTHRESH	1000.0	Minimum occupancy to gener- ate a transform for state duration model set
	DURTRANSKIND	MLLRMEAN	Transformation kind
	DURBLOCKSIZE	full	Block structure of transform for
			state duration model set
	DURBANDWIDTH		Bandwidth of transformation
			matrices for state duration model set
	DURBASECLASS	global	Macroname of baseclass for
	201121122021120	920202	state duration model set
	DURREGTREE		Macroname of regression tree
			for state duration model set
	DURADAPTKIND	BASE	Use regression tree or base classes to adapt state duration
			model set
HFB	MAXSTDDEVCOEF	10	Maximum duration to be evalu- ated
	MINDUR	5	Minimum duration to be evalu- ated
НМАР	APPLYVFLOOR	Т	Apply variance floor to model set
HGEN	MAXEMITER	20	Maximum # of EM iterations
	EMEPSILON	1.0E-4	Convergence factor for EM iter- ation
	RNDPARMEAN	0.0	Mean of Gaussian noise for ran- dom generation
	RNDPARVAR	1.0	Variance of Gaussian noise for random generation
	USEGV	F	Use speech parameter generation algorithm considering GV
	CDGV	F	Use context-dependent GV model set

Module	Name	Default	Description
	LOGGV	F	Use logarithmic GV instead of linear GV
	MAXGVITER	F	Max iterations in the speech pa- rameter generation considering GV
	GVEPSILON	1.0E-4	Convergence factor for GV iter- ation
	MINEUCNORM	1.0E-2	Minimum Euclid norm of a gra- dient vector
	STEPINIT	1.0	Initial step size
	STEPDEC	0.5	Step size deceleration factor
	STEPINC	1.2	Step size acceleration factor
	HMMWEIGHT	1.0	Weight for HMM output prob
	GVWEIGHT	1.0	Weight for GV output prob
	OPTKIND	NEWTON	Optimization method
	RNDFLAGS		Random generation flag
	GVMODELMMF		GV MMF file
	GVHMMLIST		GV model list
	GVMODELDIR		Dir containing GV models
	GVMODELEXT		Ext to be used with above Dir
	GVOFFMODEL		Model names to be excluded
			from GV calculation
HMODEL	IGNOREVALUE	-1.0E+10	Ignore value to indicate zero-
Infodele		1.01.10	dimensional space in multi- space probability distribution
HCOMPV	NSHOWELEM	12	# of vector elements to be shows
	VFLOORSCALE	0.0	variance flooring scale
	VFLOORSCALESTR		variance flooring scale vector for streams
HEREST	APPLYVFLOOR	Т	Apply variance floor to model set
	DURMINVAR	0.0	Minimum variance floor for state duration model set
	DURVARFLOORPERCENTILE	0	Maximum number of Gaussian components (as the percentage of the total Gaussian compo- nents in the system) to undergo variance floor for state duration model set
	APPLYDURVARFLOOR	Т	Apply variance floor to state du- ration model set
	DURMAPTAU	0.0	MAP tau for state duration model set
	ALIGNDURMMF		State duration MMF file for alignment (2-model reest)
	ALIGNDURLIST		State duration model list for alignment (2-model reest)

Module	Name	Default	Description
	ALIGNDURDIR		Dir containing state duration models for alignment (2-model reest)
	ALIGNDUREXT		Ext to be used with above Dir (2- model reest)
	ALIGNDURXFORMEXT		Input transform ext for state du- ration model set to be used with 2-model reest
	ALIGNDURXFORMDIR		Input transform dir for state du- ration model set to be used with 2-model reest
	DURINXFORMMASK		Input transform mask for state duration model set (default out- put transform mask)
	DURPAXFORMMASK		Parent transform mask for state duration model set (default out- put parent mask)
HHEd	USEPATTERN	F	Use pattern instead of base phone for tree-based clustering
	SINGLETREE	F	Construct single tree for each state position
	APPLYMDL	F	Use the MDL criterion for tree- based clustering
	IGNORESTRW	F	Ignore stream weight in tree- based clustering
	REDUCEMEM	F	Use reduced memory implemen- tation of tree-based clustering
	MINVAR	1.0E-6	Minimum variance floor for model set
	MDLFACTOR	1.0	Factor to control the model com- plexity term in the MDL crite- rion
	MINLEAFOCC	0.0	Minimum occupancy count in each leaf node
	MINMIXOCC	0.0	Minimum occupancy count in each mixture component
	SHRINKOCCTHRESH		Minimum occupancy count in decision trees shrinking
HMGENS	SAVEBINARY	F	Save generated parameters in bi- nary
	OUTPDF	F	Output pdf sequences
	PARMGENTYPE	0	Type of parameter generation al- gorithm
	MODELALIGN	F	Use model-level alignments given from label files to deter- mine model-level durations

Module	Name	Default	Description
	STATEALIGN	F	Use state-level alignments given
			from label files to determine
			state-level durations
	USEALIGN	F	Use model-level alignments to
			prune EM-based parameter gen-
			eration algorithm
	USEHMMFB	F	Do not use state duration models
			in the EM-based parameter gen-
			eration algorithm
	INXFORMMASK		Input transform mask
	PAXFORMMASK		Parent transform mask
	PDFSTRSIZE		# of PdfStreams
	PDFSTRORDER		Size of static feature in each Pdf-
			Stream
	PDFSTREXT		Ext to be used for generated pa-
			rameters from each PdfStream
	WINEXT		Ext to be used for window coef-
			ficients file
	WINDIR		Dir containing window coeffi-
			cient files
	WINFN		Name of window coefficient files

Other configuration variables in HTK can also be used with HTS. Please refer to HTKBook Chapter 18 for others.

3 Added command-line options

Various new command-line options have also been added to HTK tools. They are listed as follows:

HInit

Option -g	Ignore outlier vector in MSD	Default on
HRest		
Option		Default
-g s	output duration model to file s	none
-o fn	Store new hmm def in fn (name only)	outDir/srcfn
HERest		
Option		Default
-b	use an input linear transform for dur models	off
-f s	extension for new duration model files	as src
-g s	output duration model to file s	none
-n s	dir to find duration model definitions	current
-q s	save all xforms for duration to TMF file s	TMF

s)s	semi-tie	ed 2	kform			
d)	switch	to	duration	model	update	flag

a)daptation xform p)rior used

tmvw

-u tmvwapd update t)rans m)eans v)ars w)ghts

-y s extension for dur	ation model files	none
-N mmf load duration mac	ro file mmf	
-R dir dir to write dura	tion macro files	current
-W s [s] set dir for dura	tion parent xform to s	off
and optional exte	nsion	
-Y s [s] set dir for dura	tion input xform to s	none
and optional exte	nsion	
-Z s [s] set dir for dura	tion output xform to s	none

HHEd

Option -a f -i -m	factor to control the second term in the MDL ignore stream weight apply MDL principle for clustering	Default 1.0 off off
-p	use pattern instead of base phone	off
-r -s	reduce memory usage on clustering construct single tree	off off
-v f	Set minimum variance to f	1.0E-6

HMGenS

Option		Default
-a Use an	input linear transform for HMMs	off
-b Use an	input linear transform for dur models	off
-cn type of	parameter generation algorithm	0
0: bot	h mix and state sequences are given	
1: sta	te sequence is given,	
but	mix sequence is hidden	
	h state and mix sequences are hidden	
	find hmm definitions	current
-e use mod	lel alignment from label for pruning	off
-f f frame s	shift in 100 ns	50000
-g f Mixture	e pruning threshold	10.0
-h s [s] set sp	peaker name pattern to s,	*.%%%
optiona	ally set parent patterns	
-m use mod	lel alignment for duration	off
-n s dir to	find duration model definitions	current
-p output	pdf sequences	off
-rf speakin	ng rate factor (f<1: fast f>1: slow)	1.0
-s use sta	te alignment for duration	off
-t f [i l] set	pruning to f [inc limit]	inf
-v f thresho	old for switching spaces for MSD	0.5
-x s extensi	on for hmm files	none
-y s extensi	on for duration model files	none
-E s [s] set di	r for parent xform to s	off
and opt	ional extension	
-G fmt Set sou	arce label format to fmt	as config
-H mmf Load HM	IM macro file mmf	
-I mlf Load ma	aster label file mlf	
-J s [s] set di	r for input xform to s	none
and opt	ional extension	

-L dir Set input label (or net) dir	current
-M dir Dir to write HMM macro files	current
-N mmf Load duration macro file mmf	
-S f Set script file to f	none
-T N Set trace flags to N	0
-V Print version information	off
-W s [s] set dir for duration parent xform to s	off
and optional extension	
-X ext Set input label (or net) file ext	lab
-Y s [s] set dir for duration input xform to s	none
and optional extension	

Please also refer to HTKBook Chapter 17 for other command-line options.

4 Added commands and modifications in HHEd

Some HHEd commands have been added in HTS. They are as follows:

AX	filename	-	Set the Adapt XForm to filename	
СМ	directory	-	Convert models to pdf for speech synthesizer	
СТ	directory	-	Convert trees/questions for speech synthesized	r
DM	type macroname	-	Delete macro from model-set	
DR	id	-	Convert decision trees to a regression tree	
DV		-	Convert full covariance to diagonal variances	
IX	filename	-	Set the Input Xform to filename	
ΡX	filename	-	Set the Parent Xform to filename	
//	comment	-	Comment line (ignored)	

In the HHEd command MU, HTS additionally supports additive and multiplicative mixture incrementation. For example,

```
MU 6 {*.state[3].mix}
MU +6 {*.state[3].mix}
MU *6 {*.state[3].mix}
```

if the the mixture components per state is 2, the first command increases the numbers of mixtures in state 3 of all phonemes of aa to 6, the second one increases them to 8, and the last one increased them to 12.

In many HHEd commands, we are required to specify item lists to specify a set of items to be processed. In HTS, item list specification has been modified to specify stream-level items.

```
itemList = "{" itemSet { "," itemSet } "}"
itemSet = hmmName . ["transP" | "state" state ]
hmmName= ident | identList
identList = "(" ident { "," ident } ")"
ident
         = < char | metachar >
metachar = "?" | "\star"
state
       = index ["." stateComp ]
index
          = "[" intRange { "," intRange } "]"
intRange = integer [ "-" integer ]
stateComp = "dur" | "weights" | stream
         = [ " stream" index ] [ ".mix" mix ]
stream
mix
          = index [ "." ( "mean" | "cov" ) ]
```

For example,

TI str1 {*.state[2].stream[1]}

denotes tying streams in state 2 of all phonemes.